If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2-30t-25=0
a = 1; b = -30; c = -25;
Δ = b2-4ac
Δ = -302-4·1·(-25)
Δ = 1000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1000}=\sqrt{100*10}=\sqrt{100}*\sqrt{10}=10\sqrt{10}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-10\sqrt{10}}{2*1}=\frac{30-10\sqrt{10}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+10\sqrt{10}}{2*1}=\frac{30+10\sqrt{10}}{2} $
| -0.4=(0.6)*(6p-8) | | 2(3b-4)=3b+1 | | (4/5)^5xx=3/10 | | N+1/8n=1/4 | | -9k=18 | | r+9/3=6 | | 15+x,x=4.3 | | 3t-8=17-2t | | x-2/3+2=x-2/5+6 | | x-11(x-1)=111 | | 3t=5/7 | | 20-12h=h-8h | | 2.36-0.2(x+0.8)=×+0.5(0.4x-1.2) | | 4(y-6)=4y-12 | | 5y/6=3 | | 3t=1/4 | | 20-6h=h-8h | | 4(y-6)=4y-13 | | 45=-5p | | -14-w/9=-12 | | 2/11=6/7x | | 15n-12=8n+2 | | 1+x/2=1/2+x | | 6x-2=6x-6 | | -8x-1=-15+23 | | 12-5x=4x | | -5x+4=16–2x | | 4w+8=6(w-1)-1w | | 3/4x+2=12 | | (x+6)(x+2)(x-7)(x-3)=-180 | | 2*x+7=24 | | 24x+6=54 |